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Introduction

An iterative least squares procedure for analyzing the effect of various

kinds of intervention in time7series data was originally developed by Box

and Tiao (1965) and has recently been extended by Glass, Willson, and Gottman

(1974). This procedure provides a method of analysis appropriate for the

time-series quasi-experimental design of Campbell and Stanley (1963) where

the data consist of a series of observations with one or more interventions

(treatment) in the series. There are numerous applications of this design

in economics, education, and psychology, although until recently, no appro-

priate analysis techniques had been developed to deal with the model

adequately.

This paper presents and develops a complex example of a time-series experiment

using simulated data with the intent of illustrating the analytic power of a

time-series experimental analysis for educational methodologists in a variety

of suBtantive fields.

The simulated data were developed to conform to an autoregressive integrated

moving averages (ARIMA) model of order (2,1,1); i.e., the autoregressive

process was of second order, and the differencing and moving averages nrocecses

were of first order. Three intervention effects were built into the 200

observations after the 50th, 100th, and 150th data points. The first

intervention exerted a constant effect on the series; the second, a damped

effect, and the third caused a general drift (trend shift) of the data points.



While it is true that in practice one would rarely encounter three such

divergent intervention effects on the same series of data, these three

effects were selected for illustration, and 'do, in fact, represent

commonly encountered intervention or treatment effects in real data. A

constant intervention effect can be illustrated by the hypothetical situation

where in an all-male college, the level (mean) of SAT scores for freshmen

increases by a constant amount (measured over a number of years) due to the

intervention of allowing the university to become co-educational. An inter-

vention that exerts a damped effect on the initial level of a series is

illustrated by the well-known phenomenon of the Hawthorne effect in behavioral

research. In this situation, the scores on tests in a particular classroom

might initially rise after introduction of a new classroom approach (treatment

or intervention), but would gradually decline to the original level over time

as the effect of the intervention or the novelty of the situation wore off.

The third type of intervention illustrated in this paper, that of a trend or

drift effect, is found in practical situations in which the treatment not only

changes the initial mean of the series, but continues to exert an effect by

changing the slope of the observations. For example, the distance a student

in a physical education class can run might be constant in the first several

weeks of the class. Introduction of a required period of calisthenics preceding

each attempt to run might enable the student to increase his running speed by

a few seconds every week for the remainder of the semester.



Method

A computer program was developed to generate data conforming to.the ARIMA

(2,1,1) model described above. The two autoregressive parameters were set at

-.3 and .6, respectively, and the moving averages parameter at .5; the initial

level of the series was set to zero and the error variance to unity. The

three interventions, after the 50th, 100th, and 150th observations, consisted

of:

(1) a constant effect of 10 points; i.e.,

2
t
= 2

t
+ 1 0 t = 51 to 100

(2) a damped effect; i.e.,

20002K-1
2 2K+99 22K+99

K = 1, 25

*
2 20

2
01)2K-1

2K+100 2K+100

(3) a trend effect; i.e.,

t

Et = Et + r (.2) t = 151 to 200
i=1

Autocorrelations and partial autocorrelations were then computed for each set

of 50 observations separately. Table 1 shows these results.

Identification of the proper model from the pattern of autocorrelation and

partial autocorrelation coefficients becomes increasingly difficult as the

true model increases in complexity. In the present example, the model is

quite complex and consequently exact model identification is difficult.

Fortunately, there are frequently two or more models of the ARIMA (p,d,q)

form that will satisfactorily fit the data. To illustrate this point, three

different models were identified from the pattern of autocorrelation and

-3-
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partial autocorrelation coefficients. These were:

(1) The true ARIMA model (2,1,1) where,

It
1+at alat-1 41 1)(1t-1 1) 42 (zt-2 1)

02 (Zt..3 - L)

(2) The ARIMA model (2,0,1) where,

It
at elat-1 1(2t-1 O2(zt_2 L)

(3) The ARIMA model (1,1,1) where,

2 = L+ at - slat -1
(+1+ 1) (2t-1

L)
ch2(1t-2 L)

in each model, it is the observation at time t

a
t is the error component at time t

L is the initial level

el is the first order moving averages parameter

01 is the first order autoregressive parameter

02 is the second order autoregressive parameter

The simulated data were then run through a computer program for analyzing

time-series experiments to compute least squares estimates of the initial

level of the series and of the three intervention effects. Three such

computer runs were made to obtain the parameter estimates for each of the

potential models identified from the autocorrelation and partial autocorrelation

coefficients. In each case, a design matrix was constructed (as input for the

program) which specified the form of the parameter effects to be estimated. (The

design matrix is shown in the appendix.)

-8- '10



The final step in this project was to assess the goodness of fit of each of

the least squares solutions. To accomplish this, the residuals after fitting

the model were computed for each observation. These residual data were then

2
autocorrelated, and a x statistic computed which tested the independence

2
of the residuals. (The x statistic is a function of the sum of squared

autocorrelation coefficients.)

Results and Discussion

Table 2 summarizes the results of analyzing the data as time-series experiments

under three different ARIMA models. All three produced parameter estimates

of initial level and intervention effects near the true values built into

the data with the exception of the (2,0,1) model estimate of initial level.

The true initial level of the series was zero, and the (1,1,1) and (2,1,1)

models yielded estimates of .41 and .50, respectively, both not significantly

different from zero. The (2,0,1) model, however, estimated the initial level

of the series as 2.61 which was significantly different from zero with a t

statistic value of 3.96. Undoubtedly, this estimate was large because the

original data required differencing in order to achieve stationarity, yet the

(2,0,1) model specifies that no differencing is necessary.

The estimated values of the first intervention effect were 9.74, 10.01, and

9.87, respectively, for the (2,1,1), 2,0,1), and (1,1,1) models, all of

which were highly significantly different from zero and near the true value

of 10.0. Similarly, the estimates for the second intervention effect were

all near 10.0 and highly significantly different from zero. The three models

-9-
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produced estimates of the third intervention parameter of .31, .46, and .30,

,,

respectively, for the (2,1,1), (2,0,1), and (1,1,1) model, all of which were

reasonably close to the true value of 0.2.

The error variance estimates were also near the true value of unity in all

three cases, the smallest value yielded by the (2,1,1) model, the middle

value by the (1,1,1), and the largest value by the (2,0,1) model.

2
The x test statistics of the residuals after fitting each model were all

non-significant indicating that any of the three models was adequate for
2

describing the data according to the x criterion; the (2,1,1) model had the
2

lowest x value, however.

The estimates of 01, 02, and el for each model were, of course, quite

different across the three models. Probably the most interesting of these,

is the result for the (2,1,1) model, since the true autoregrepsive and moving

averages parameters were specified in the construction of the model, and can

be compared to the estimated values. The values were originally specified

as 01 = -.3, 02 = .6, and el = .5. The minimum error variance was found

at 01 = -.6, 02 = .3, and 02 = .1. The differences between the two sets of

values probably resulted front sar.pling error during generation of the data

(using the random number generator to build random error into the model).

.



Summary

Simulated data were generated to conform to an ARIMA (2,1,1) process, and

three intervention effects were built into the series. Analysis of the series

was performed in two stages. First, separate correlograms of the data

were inspected before and after each intervention to verifythat the time-

series conformed to an ARIMA model of order (2,1,1).

Second, the data were analyzed using a program specifically developed for

analyzing time-series data with one or more interventions. A design matrix

was specified for the four parameters to be estimated (i.e., the initial

level of the series, and the, three intervention effects), incorporating a

constant, a damped, and a change in drift intervention effect. Values of

the two autoregressive parameters, 4,1, and (:)22 and the moving averages

parameter, el, were examined over the invertibility and stationarity regions

to determine the minimum residual error term, and thus, the best fit for the

model, using the least squares criterion. The values of (1) and 0 which

minimized the residual error variance were found to be similar to and within

an acceptable range of the values used to build the simulated data. Examination

of the corresponding parameter estimates and associated t statistics for the

initial level of the series and the three intervention effects also revei:led

nearly exact estimates of the true parameter values which were highly

significant for all design effects.



Appendix: Design Matrix Used for the Three

Time-Series Experiment Analyses

1.00 0.00 0.00 0.00
1.00 0.00 0.00 0,00
1.00 0.00 osno 000
1.00 0,00 0,00 0,00
1.00 0,00 0.00 0,00
1.00 0,00 0,0o o,00
1.00 0,00 0.00 0,00
1.00 0,00 0,00 0.00
1.00 0,00 000 0,00
1.00 0 ;00 0.00 0,00
1.00 0,00 0,00 0,00
100 0.00 0,00 0,00
1,00 o,00 0,0o o,00
1.00 0,00 0,00 odo
1.00 0,00 o,00 0,00
1.00 0,00 0.00 0,00
1.00 0,00 0,0o o,00
1.00 0,00 0,0o 0,00
1.00 0.00 0,00 0,00
10o 0.00 0.00 0,00
1.00 0.00 0.00 0,00
1.00 0.00 0.00 0.00
1.00 0,00 0.00 0.00
1.00 0.00 0.00 0,00
1.00 0,00 0.00 0.00
1.00 000 0,00 0,00
1.00 0.00 0.00 000
10o o,00 0.00 0,00
1.00 0,00 000 0,00
1.00 0.00 0,00 0,00
1.00 0,00 ojoo 0,00
1.00 0.00 0.00 0,00
1.00 0.00 0,00 0,00
1,00 0.00 0.00 0,00
1.00 0.00 0.00 0,00
1.00 0,00 0.00 0,00
1.00 0,00 0,00 0.00
1.00 0.00 0.00 0.00
1.00 0.00 0.00 0,00
100 0.00 0.00 0.00
1.00 0.00 0.00 0.00
1,00 0.00 0,00 0.00
1.00 0,00 0.00 0,00
1.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00
1.00 0,00 0.00 0.00
1.00 o.ob o,00 o.00
Loa 0,00 0.00 0.00
1.00 0.00 0.00 0,00
100 1.00 0.00 0.00
100 1.00 0.00 0.00
1.00 1.00 000 0,00
1,00 1,00 0.00 0,00
1,00 1.00 0,00 0,00
1.00 1.00 0.00 0.00
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Appendix: Design Matrix (continued)

I

1.00 1.00 0.00 0.(0
1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0;00 0.00

1.00 1.00 0.00 0.0o
1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0,00 0.00

1.00 1.00 0.00 0.00
1.00 1,00 0,00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0,00
1.00 1.00 0,00 0.00

1.00 1.00 0.00* 0.00
1.00 1,00 0,00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0,00 0.00
1.00 1.00 0.00 0.00
1.00 1,00 0.00 0.00

1.00 1.00 0,00 0.00
1.00 1.00 0,00 0,00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0,00 0,00

1.00 1.00 0.00 0,00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00

1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00
1.00 1.00 0.00 0.00

1.00 1.00 0,00 0.00
1.no 1.00 0.00 0.00

1.00 1.00 0.00 0.00
1.00 1,00 0,00 0.00

1.00 1.00 0.00 0.00
1.00 0.00 1.00 0,00
1.00 0,00 1,00 0.00

1.00 0.00 .50 0.00
1.00 0.00 .50 0.00

1.00 0.00 .25 0,00
1.00 0.00 .25 0,00
1.00 0.00 .13 0.00
1.00 0,00 .13 0.00

1.00 0.00 .06 0.00

1.00 0.00 .06 0.00
1.00 0.00 .03 0,00

1.00 0.00 .03 0,00
1.00 0.00 ,02 0.00
1.00 0,00 02 0.00

1.00 0.00 ,.01 0,00

1.00 0.00 .01 0,00

-14-
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Appendix: Design Matrix (continued)

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.0o
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.00
1.00
1.00
1.no
1.00
1.00
1.00
1000
1,00
1.00
1.00
1.00
1.00
1,00
1.00
1.00
1.00
Poo
1.00
1.00
1.00
1.00
1.00
1.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.0o
0.00
0.00
coo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0o
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0o
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.0o
0.00
0.00
0.00
0.00
0.00
0,00

.00

.00

.00

.00

.00

.00
-0.00
0.0o
0.00
0.00
o.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0o
0.00
0.00
0.0o
0.00
0.00
0.00
0.00
0.0o
0.00
0.00

-o.00
0.00
0.00
o.00
0.00
0.0o
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
o.00
0.00
0.00
0.00
0.0o
0.00
0.00
0.00
0.0o
0.0o
0.00
o.00
0.00
0.00
0.0o
0.00
0.0o
0.00
0.00
o.00
0.00
0.00
0.00
0.00
1.00
2.0o
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12,00
13,00
14,00
15.00
16,00
17.00
18.00
19.00
20.00
21,00
22,00
23,00
24,00
25.00
26.00
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Appendix: Design Matrix (continued)

1.00 0.00 0.00 27.00
1.00 0.00 0.00 28.00
1.00 0.00 0.00 29.00

1.00 0.00 0.00 30.00
1.00
1.00
1.00
1.00
1.00

0.00
0,00
0.00
0.00
0.00

0.00
0.00.
0.00
0.00
0.00

31.00
32,00
33.00
34,00
35.00

1.00 0.00 0.00 36.00
1.00 0.00 0.00 37.00
1.00 0.00 0.00 38.00
1.00 0.00 0.00 39.00
1'00 POO 0.00 40.00
1.00 0.00 0.00 41,00
1.00 0.00 0.00 42.00
1.00 0.00 0.00 43.00
1.00 0.00 0.00 44.00
1.00 0.00 0.00 45.00
1.00 0.00 0.00 46.00
1.00 0.00 0.00 47.00
1.00 0.00 0.00 48.00
100 0.00 0.00 49.00
1.00 0.00 0.00 50.00
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